‘ KPNQWEST ltalia

/Author: Max Muzi <massimiliano.muzi@kgi.it>

Last update: 2011-01-13

Location: http://socap.kqumg.it/chaka/current/0.9.5/docs/kqumsg0.9.5.manual.en.pdf
Helpdesk: <soap-support@kgqumg.it>

KQ UMG SOAP Gateway (KQUMSG1)

User manual
Covering release 0.9.5

1. Overview

The KQ UMG SOAP Gateway (KQUMSG1) enables customer applications to access most of the main
features of the kqumg.it messaging platform through the SOAP protocol. The service is available over
HTTP and HTTP-SSL/TLS.

Currently (April 2010), the following messaging types are supported:

- standard Fax/SMS messages and bulk SMS messages
- bulk mailmerge-like trackable email (Unimail)
- Microsoft® "mailmerge" Fax messages (mailmerge-ng)

Users can compose and inject new messages combining one or more documents and a recipient list
(§2.2.2). Both documents (§2.2.1) and recipient lists (§2.2.3) can be uploaded separately and reused
in distinct messages throughout the same session. The gateway can also be instructed to retrieve and
use remote documents available through HTTP.

The status of pending outbound messages can be queried by calling special methods, either specifying
a message id or a time range (82.3). Besides, users can request that all destination status changes be
asynchronously notified to their host, provided they can set up and expose an appropriate HTTP
service (§3).

The full WSDL description of service operations and data structures is available at the following URLs:
http://soap.kqumg.it/chaka/current/0.9.5/Chaka.wsdl (KQUMGS]1 service)
http://soap.kqumg.it/chaka/current/0.9.5/Chaka_CB.wsdl (client-side callback service)

The service is also available though HTTP+SSL/TLS at the following URL:
https://ssl.kqumg.it/chaka/current/0.9.5/Chaka.wsdl

‘ KPNQWEST ltalia

2. Operations

Available operations can be grouped under three categories: (1) session activation, (2) upload and
sending actions (§2.2), (3) destination status querying (§2.3).

All operations in group 2 and 3 assume that a session has already been successfully activated (§2.1).

2.1. Sessions
A new session is initiated by calling the method start with the following arguments:

userid user-id
password password
options options

Upon success, a special token called auth is returned, which is to be used as the first argument in all subsequent
operations. If an operation fails with numerical code 403 or 500 (see §4), the client should call start again, and
repeat all intended operations using the newly returned auth token.

The options values determine some aspects of the gateway's behavior when performing operations within the
current session. As of release 0.9.5, some of the options are still unimplemented.

contact-person an email address (required)

soap-callback user-side HTTP callback endpoint for status asynchronous notifications;
service must implement both ping and processStatusNotifications
operations as declared in Chaka_CB.wsdl (see §3).

max-browse-block100-count max number of 100-record blocks returned by each call to
browseMessagesByDate o browseDestinationsBySeqld. (Not yet
implemented.)

max-remote-operation-time max completion time for remote retrievals. (Not yet implemented.)

max-method-completion-time max completion time for SOAP operations . (Not yet implemented.)

If soap-callback is specified, the gateway will try to invoke the ping operation as part of the session activation
process (see §3).

The contact-person field is not optional: this address should allow to reach the person or the group responsible
for developing or maintaining the client application, if serious problems arise or urgent communications are
required.

Clients can call the check method to make sure the session token is still valid and know when it will actually
expire. This methods returns a single expires element of type xsd:Datatime.

‘ KPNQWEST ltalia

2.2. Document uploading and message injection

2.2.1. storeDocuments

Documents can be uploaded using either the storeDocument or storeDocuments operations. They have
basically the same function, except the former can only handle one document at a time.

storeDocuments operation accepts two arguments:

auth session token (see §2.1)
sources sequence of elements of type DocumentSource

and returns a sequence of storeDocumentResult structures.

Each item in the sources sequence should include a single element that can be either of type Document
or type RemoteDocument. In the former case, the document's content will be embedded in the data sub-
element using base64 encoding. In the latter case, the location sub-element will specify the remote
location (URI) where the document can be retrieved from. (Only the 'http' schema is supported for the
moment). The system will automatically try and fetch every file specified as a remoteDocument. Each
document shall have a name that uniquely identifies it during the session's lifetime (unique-name).

Every stored document can be later referred to by means of a DocumentRef element (see §2.2.2).

The storeDocumentResult items returned by this method describe the results of the call and comprise
the following information for each of the successfully stored documents:

name the document's unique name (string '.' extension)
size size in bytes
md5 MD5 digest in hex format

Attribute name must be in the form string '." extension, where extension is a well-known file extension
identifying the file's content type, such as “doc”, “pdf”, “txt”, etc.

2.2.2. sendMessage

The sendMessage function will be used to assemble and submit a new message. The following
arguments must be specified:

auth session token (§2.1)
request-uid (see below)
message the message

A structure is then returned including the numerical id of the message and other relevant information.
The main components of the message structure are the following:

subject the subject
options the options (flags, scheduling, etc..)

‘ KPNQWEST ltalia

fax|sms|umail | faxmsmerge | bulksms elements representing the actual message to be injected
An sms/bulksms message (standard/bulk SMS) has the following structure:
destinations sequence of elements of type Destination
or destination-list-name name of an uploaded destination list
short-msg text of the SMS message

A fax message (standard Fax) has the following structure:

destinations sequence of elements of type Destination
or destination-list-name name of an uploaded destination list
documents sequence of elements of type Document or DocumentRef

An umail message (Unimail) has the following structure:

destinations sequence of elements of type Destination

or destination-list-name name of an uploaded destination list

documents sequence of elements of type Document or DocumentRef
options special extra options

A faxmsmerge message (mailmerge-ng) has the following structure:

destinations sequence of elements of type Destination
or destination-list-name name of an uploaded destination list
msword-doc Document/DocumentRef element including o referring to an MS-Word file

The message destinations (i.e. the destinations element in fax, sms, bulksms, umail, faxmsmerge
elements) consist in a sequence of elements each including address, cc1 and cc1 fields and an optional
extra element. The first field represents the address of the destination (namely, a phone number or an
email address), while the other two include additional information to be linked to the destination and
later returned as part of the querying operation results or in the feedback status callback calls. The
extra element is a set of 10 free text attributes to be used as Unimail placeholder macro values.

Each destination in the list is assigned a unique numerical sequential id representing the position of
the destination within the sequence, starting off with 1. That value will be returned to user as a seq-id
element (see §2.3.1).

The document list of a Fax and Unimail message (i.e. the documents element) may embed full
documents as Document elements (see above 82.2.1) or DocumentRef elements referring to previously
stored documents (via unique-name).

Unimail messages (i.e. the umail elements) include a special options element used to access and
control some of the service's advanced features:

embed-files if true, outbound generated messages will embed docs and images

from-name sender's display name used in outbound messages

from-email sender's address used in outbound messages

subject subject in outbound messages (if unspecified, the request's subject will be used)

no-receipt-request ~ don't include return-receipt requests in outbound messages

‘ KPNQWEST ltalia

The request-uid attribute helps cope with situations when the network connection gets broken before
the client could see the server's response. If a call fails due to network problems, a client may (and
normally should) resubmit the request using the same request-uid. If the previous call has indeed been
successfully processed, the server will return a "cached" result and won't generate a duplicate message.

2.2.3. storeDestinationList

Clients can upload one or more destination lists using the method storeDestinationList. Uploaded lists
are available throughout the session and can be used in any message by specifying their unique name
in the destination-list-name element (see §2.2.2).

storeDestinationList accepts the following arguments:
unique-name unique name of the list
table | list a DestinationTable element or a sequence of Destination element (see §2.2.2)

A DestinationTable structure includes the following members:
address-column, cc1-column, cc2-column
names of the columns hosting address, cc2 and cc2 fields

columns string of type xsd:NMTOKENS, representing the field names of the table.
If it's not specified, the table's first row is assumed to be a column
header

format format used for the table data (currently, one of semicolon-csv,
comma-csv, tab-csv, json-array)

data table raw data (base64 encoded)

expected _count (optional) number of rows the client expects to be read (if actual count

doesn't match, an error is raised)

When a destination list table is being imported, the table data is parsed into a record list. Each record
field is given a name according to the columns value or to the first row's content (if columns is not
specified). Then, the address, ccl and cc2 fields are selected based on the names specified in address-
column, ccl-column and cc2-column, respectively. If any of these column names is not defined, the
import process is aborted and an error is raised. On success a structure is returned including the list
name (name) and number of the successfully imported records (count).

‘ KPNQWEST ltalia

2.3. Destination status querying

The current status of message destinations can be queried by calling either browseMessagesByDate or
browseDestinationsBySeqld, depending on whether a client is interested in a time range or in a single
specific message.

The former allows a client to retrieve the detail summaries of all messages submitted within a given
period, as defined by since and until arguments. The returned structure will include a sequence of
items of type MessageDetail, each of which will in turn comprise the message unique id (msg-id), the
subject (subject), the creation time (created), the overall number of recipients (dest-count) and the
number of destinations having reached a final (or preudo-final) status (completed-dest-count).
Additionally, the status details of the first destination (first-dest) is included for convenience.

The browseDestinationBySeqld operation returns the current status of a given message's specific
destinations. Arguments first and last define a range of sequential id numbers within the destination
list. The returned structure will include all destinations whose sequential id is equal or greater than
first and less or equal to last. Each destination's status is represented by an element of type
DestinationDetail, which among other includes the status string (status), a timestamp (time) and the
sequential id (seg-id).

If a message was sent to a single recipient, the presence of the first-dest element is specially convenient
in that it spares the client a call to browseDestinationBySeqld.

3. Asynchronous notifications

Users can request that all status updates for a given message be asynchronously notified to their own
HTTP service exposing an appropriate interface.

User-side callback service must implement the SOAP operations described in Chaka CB.wsdl, available
at http://soap.kqumg.it/chaka/current/0.9.5/Chaka CB.wsdl, and must run on ports 80 or 8080, or
on a port in the range 40000-50000.

Chaka_CB service (with "CB" standing for call-back) currently includes two operations:

ping called by the gateway during the session activation
processStatusNotifications invoked when new status details are available to be notified

The user-side service's endpoint URI is passed to the gateway as the soap-callback option of the start
operation. The server will try to invoke the ping operation before returning. If the process completes
successfully, all subsequent injected messages will be bound to the specified callback endpoint URI.

Both ping and processStatusNotifications operations are one-way methods. Their implementation must
return an HTTP response with an empty body and a status code indicating success (200-299). Failure
to successfully call the ping operation on the endpoint will result in the session not being activated and
an error being returned. Failure to call the processStatusNotifications operation will result in the
pending notifications being deferred and the call being retried at a later time.

‘ KPNQWEST ltalia

Note that users do not actually need to set up a full-fledged SOAP service to take advantage of this
feature. A simple web server and an XML parser will do, since no SOAP response needs to be
generated.

4. Errors

When an error occurs, a SOAP-ENV:Fault response is returned. Here is a example:

<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>403 AUTH BAD CREDENTIALS</faultstring>
<detail>Invalid or expired 'auth' token</detail>
</SOAP-ENV:Fault>

The faultstring element includes an HTTP-like numerical code followed by an uppercase string code.
The detail element contains an English description of the error.

‘ KPNQWEST ltalia

5. Troubleshooting

Trouble reports and help requests must be directed to <soap-support@kqumg.it>. When reporting
problems or unexpected errors/behaviors, you should attach a full log (including HTTP headers and
XML body) of all relevant SOAP messages sent to and received from the server.

Interoperability tests have been carried out using clients developed in the following languages or
environments:

- Perl + SOAP::Simple

- Python + NuSOAP/0.7.2
- PHP-SOAP/5.2.2

— 4D built-in SOAP Client
- Axis/1.4

- Java/1.5.0 06

- C#/.NET

No serious compatibility issues have arisen so far.

If your environment/language is not listed above and you indeed managed to successfully use the
service, please, let us know. If you also provide us with some code samples, we might include them in
a future release of this document as an additional help, along with a reference to your name, company
or domain.

‘ KPNQWEST ltalia

6. XML snippets

The following samples are for demostration pourpose only. They are not intended to be used as
surrogate documentation and should not be relied on when writing client code. Samples are not even
complete and all details that are not called for by the WSDL (such as the namespace prefixes m1 and
mZ2) may change at any time.

Here is a start request sample (SOAP-ENV:Body part) and a possible response:

<SOAP-ENV:Body xmlns:ml="urn:chaka-0.9.5" >

<ml:start>

<ml:userid>user@example.com</ml:userid>

<ml:password>password</ml:password>

<ml:options>
<ml:contact-person>mailto:develop-staff@example.com</ml:contact-person>
<ml:soap-callback>http://soap.example.com/soap-kg-callback</ml:soap-callback>
</ml:options>

</ml:start>

<SOAP-ENV:Body xmlns="urn:chaka-0.9.5">
<ml:startResponse>
<ml:auth>4uY29tbTIwMDAUaXQvY2dpLWJIpbi9zb2FwY2Jsb2cucGwKCSA=</ml:auth>
</ml:startResponse>
</SOAP-ENV:Body>

Below is a storeDocuments request sample (SOAP-ENV:Body part) with a possible response:

<SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<storeDocuments xmlns="urn:chaka-0.9.5" >
<auth> [...] </auth>
<sources>
<source>
<remote-document>
<location>http://www.example.com/documents/myfax.pdf</location>
<unique-name>myfax.pdf</unique-name>
</remote-document>
</source>
<source>
<document> <unique-name>myfax.tif</unique-name>
<data>
SUkgABQSAQAAKJISVAGWzZAgBsVgCUzQgAs1kBUDYrAMpmBUDZ rAAOmXUAZDbMCOGXWAJTNCoCy
WOFQONisAymYFQONmsACibFQBlswKgbEFYAIMOKgLJZAVA2KWDKZgVAZ2awAKJIsVAGWzAgBsVgCU
ICAWN]jIzMzI3Nzc3ICBGcmkgTm92IDESIDE20jUOOJE3IDIWMDQKAAAAGBKAACAAAACAGARAA
IAA=
</data>
</document>
</source>
</sources>
</storeDocuments>
</SOAP-ENV:Body>

1" KPNQWEST ltalia

<SOAP-ENV:Body xmlns:ml="urn:chaka-0.9.5">
<ml:storeDocumentsResponse>
<ml:stored-list>
<ml:stored>
<ml:name>myfax.pdf</ml:name>
<ml:md5>4cf791b5c9d0bled627b0130a05a9a69</ml :md5>
<ml:size>98891</ml:size>
</ml:stored>
<ml:stored>
<ml:name>myfax.tif</ml:name>
<ml:md5>375992b51f242f46ae284c72298bd928</ml :md5>
<ml:size>70472</ml:size>
</ml:stored>
</ml:stored-list>
</ml:storeDocumentsResponse>
</SOAP-ENV:Body>

Below is a sendMessage request sample (SOAP-ENV:Body part) for injecting a Fax message, followed by
a possible response:

<SOAP-ENV:Body xmlns="urn:chaka-0.9.5" >
<sendMessage>
<auth> [auth string] </auth>
<request-uid>0123456789890123456789</request-uid>
<message >
<subject>Test message (via SOAP)</subject>
<fax>
<destinations>
<item><address>0270030070</address><ccl>codelA</ccl><cc2>codelB</cc2> </item>
</destinations>
<documents>
<item><document-ref><unique-name>myfax.pdf</unique-name></document-ref></item>
</document>
</fax>
</message>
</sendMessage>

<SOAP-ENV:Body xmlns:ml="urn:chaka-0.9.5">

<ml:sendMessageResponse>
<ml:result>
<ml:request-uid>0123456789890123456789</ml:request-uid>
<ml:cached-result>false</ml:cached-result>
<ml:info> <ml:msg-1d>13283256</ml:msg-id> </ml:info>
</ml:result>

</ml:sendMessageResponse>

</SOAP-ENV:Body>

< KPNQWEST ltalia

Below is a storeDestinationList sample request for uploading a CSV destination table:

<SOAP-ENV:Body =xmlns:ml="urn:chaka-0.9.5">
<ml:storeDestinationList>
<ml:auth> [auth string] </ml:auth>
<ml:list>
<ml:unique-name>phone-list-1</ml:unique-name>
<ml:table>
<ml:address-column>phone</ml:address—-column>
<ml:ccl-column>name</ml:ccl-column>
<ml:cc2-column>company</ml:cc2-column>
<ml:columns>
name company addressl address2 city zip state fax phone email
</ml:columns>
<ml:format>semicolon-csv</ml:format>
<ml:data>
<!-- Dbase6d4d data -->
</ml:data>
</ml:table>
</ml:list>
</ml:storeDestinationList>

Example of a call to processStatusNotifications (SOAP-ENV:Body part):

<SOAP-ENV:Body xmlns:m2="urn:chaka-callback-0.9.5" xmlns:ml="urn:chaka-0.9.5" >
<m2:processStatusNotifications>
<m2:notif-list>
<m2:notif>
<m2:msg-id>13283256</m2:msg-id>
<m2:request-uid>0123456789890123456789</m2:request-uid>
<m2:dest-count>992</m2:dest-count>
<m2:completed-dest-count>992</m2:completed-dest-count>
<m2:subject>Test message (via SOAP)</m2:subject>
<m2:dest>
<ml:seqg-id>1</ml:seqg-id>
<ml:address>0270030070</ml:address>
<ml:ccl>codelA</ml:ccl>
<ml:cc2>codelB</ml:cc2>
<ml:status>0K</ml:status>
<ml:time>2006-11-20T10:24:40Z2</ml:time>
<ml :pages>1</ml:pages>
</ml:dest>
<m2:notif>
<m2:noitif-list>
<m2:processStatusNotifications>

< KPNQWEST ltalia

5. Notes
The codename of KQUMSGI is chaka, which means "bridge" in the Quechua language.

	KQ UMG SOAP Gateway (KQUMSG1)
	User manual
	1. Overview
	2. Operations
	2.1. Sessions
	2.2. Document uploading and message injection
	2.2.1. storeDocuments
	2.2.2. sendMessage
	2.2.3. storeDestinationList

	2.3. Destination status querying

	3. Asynchronous notifications
	4. Errors
	5. Troubleshooting
	6. XML snippets
	5. Notes

